The Great Pumpkin Decomposition Investigation

Objective:

Students will investigate how different environmental conditions affect the decomposition rate of pumpkins and learn about decomposition's role in nutrient cycling.

Key Science Concepts

- Decomposition: The process of organic materials breaking down
- Variables: Understanding independent, dependent, and controlled variables
- Ecosystems: How decomposition contributes to soil health
- Data Collection: Making consistent observations over time
- Microorganisms: The role of bacteria and fungi in breaking down materials

Materials Needed

- 4 small pumpkins (or large pumpkin pieces)
- 4 clear plastic containers with lids
- Soil (enough to partially cover pumpkins)
- Water spray bottle
- Measuring cups
- Magnifying glasses
- Digital thermometer (optional)
- · Science notebooks or recording sheets
- Permanent markers
- Gloves

Experiment Procedure

Part 1: Setup & Hypothesis (Week 1 - 30 minutes)

- 1. **Engage:** Show students a pumpkin. Ask: "What happens to pumpkins after Halloween? How do they change over time?"
- 2. Introduce Variables: Explain they'll test different conditions:
- Container 1: Dry soil (control)
- Container 2: Moist soil
- Container 3: Moist soil in sunlight
- Container 4: Moist soil in refrigerator
- 3. Prepare Containers: Students work in groups to:
- Label containers
- Add equal amounts of soil
- Place pumpkin pieces in each
- Apply different conditions
- 4. Make Predictions: Students complete initial observations and hypotheses.

Part 2: Weekly Observations (Weeks 2-4 - 10-15 minutes each)

- 1. Consistent Data Collection: Each week, students:
- Observe changes in each pumpkin
- Measure mold growth (if any)
- Record texture changes
- Note any smells
- · Draw detailed observations
- 2. Safety: Remind students not to open containers or touch decomposing material directly.

Part 3: Final Analysis & Conclusions (Week 4 - 20 minutes)

- 1. Compare Results: Groups share their findings across all conditions.
- 2. Discuss Patterns: "Which condition decomposed fastest? Why?"
- 3. Real-World Connections: Connect to composting, recycling nutrients, and natural cycles.

Pumpkin Decomposition Recording Log

Part 1: Experimental Setup

Our Variables:

- Independent Variable (what we change): Environmental conditions
- Dependent Variable (what we measure): Decomposition rate
- Controlled Variables (what stays same): Pumpkin size, soil type, container size

Container Conditions:	
Container #1:	
Container #2:	
Container #3:	
Container #4:	
Hypothesis:	
I predict that the pumpkin in	will decompose the fastest because

Part 2: Weekly Observations

Week 1 - Initial Observations:

Container	Color	Texture	Smell	Mold?
#1				
#2				
#3				
#4				

Week 2 Observations:

Container	Changes Noticed	Mold Coverage	Smell
#1			
#2			
#3			
#4			

Week 3 Observations:

Container	Changes Noticed	New Organisms	Decomposition Stage
#1			
#2			
#3			
#4			

Week 4 Observations:

Container	Final Appearance	Decomposition Rating (1-5)	Surprising Finding
#1			
#2			
#3			
#4			
nich condition decompo	osed fastest?		